Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The hot plasma in galaxy clusters, the intracluster medium, is expected to be shaped by subsonic turbulent motions, which are key for heating, cooling, and transport mechanisms. The turbulent motions contribute to the nonthermal pressure, which, if not accounted for, consequently imparts a hydrostatic mass bias. Accessing information about turbulent motions is thus of major astrophysical and cosmological interest. Characteristics of turbulent motions can be indirectly accessed through surface brightness fluctuations. This study expands on our pilot investigations of surface brightness fluctuations in the Sunyaev–Zel’dovich and in X-ray data by examining, for the first time, a large sample of 60 clusters using both SPT-SZ and XMM-Newton data and spans the redshift range 0.2 < z < 1.5, thus constraining the respective pressure and density fluctuations within 0.6R500. We deem density fluctuations to be of sufficient quality for 32 clusters, finding mild correlations between the peak of the amplitude spectra of density fluctuations and various dynamical parameters. We infer turbulent velocities from density fluctuations with an average Mach number , in agreement with numerical simulations. For clusters with inferred turbulent Mach numbers from fluctuations in both pressure, , and density, , we find broad agreement between and . Our results suggest either a bimodal or a skewed unimodal Mach number distribution, with the majority of clusters being turbulence-dominated (subsonic) while the remainder are shock-dominated (supersonic).more » « lessFree, publicly-accessible full text available May 29, 2026
-
Abstract We present joint South Pole Telescope and XMM-Newton observations of eight massive galaxy clusters (0.8–2 × 1015M⊙) spanning a redshift range of 0.16–0.35. Employing a novel Sunyaev–Zel’dovich + X-ray fitting technique, we effectively constrain the thermodynamic properties of these clusters out to the virial radius. The resulting best-fit electron density, deprojected temperature, and deprojected pressure profiles are in good agreement with previous observations of massive clusters. For the majority of the cluster sample (five out of eight clusters), the entropy profiles exhibit a self-similar behavior near the virial radius. We further derive hydrostatic mass, gas mass, and gas fraction profiles for all clusters up to the virial radius. Comparing the enclosed gas fraction profiles with the universal gas fraction profile, we obtain nonthermal pressure fraction profiles for our cluster sample at >0.5R500, demonstrating a steeper increase betweenR500andR200that is consistent with the hydrodynamical simulations. Our analysis yields nonthermal pressure fraction ranges of 8%–28% (median: 15% ± 11%) atR500and 21%–35% (median: 27% ± 12%) atR200. Notably, weak-lensing mass measurements are available for only four clusters in our sample, and our recovered total cluster masses, after accounting for nonthermal pressure, are consistent with these measurements.more » « lessFree, publicly-accessible full text available May 7, 2026
-
Free, publicly-accessible full text available February 13, 2026
-
Abstract The environments where galaxies reside crucially shape their star formation histories. We investigate a large sample of 1626 cluster galaxies located within 105 galaxy clusters spanning a large range in redshift (0.26 <z< 1.13). The galaxy clusters are massive (M500≳ 2 × 1014M⊙) and uniformly selected from the SPT and ACT Sunyaev–Zel’dovich surveys. With spectra in hand for thousands of cluster members, we use the galaxies’ position in projected phase space as a proxy for their infall times, which provides a more robust measurement of environment than quantities such as projected clustercentric radius. We find clear evidence for a gradual age increase of the galaxy’s mean stellar populations (∼0.71 ± 0.4 Gyr based on a 4000 Å break, Dn4000) with the time spent in the cluster environment. This environmental quenching effect is found regardless of galaxy luminosity (faint or bright) and redshift (low or high-z), although the exact stellar age of galaxies depends on both parameters at fixed environmental effects. Such a systematic increase of Dn4000 with infall proxy would suggest that galaxies that were accreted into hosts earlier were quenched earlier due to longer exposure to environmental effects such as ram pressure stripping and starvation. Compared to the typical dynamical timescales of 1–3 Gyr of cluster galaxies, the relatively small age increase (∼0.71 ± 0.4 Gyr) found in our sample galaxies seems to suggest that a slow environmental process such as starvation is the dominant quenching pathway. Our results provide new insights into environmental quenching effects spanning a large range in cosmic time (∼5.2 Gyr,z= 0.26–1.13) and demonstrate the power of using a kinematically derived infall time proxy.more » « less
-
Abstract We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy ( keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rate yr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate is yr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet power erg s−1, which is consistent with the X-ray cooling luminosity ( erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.more » « less
-
Abstract We present optical follow-up observations for candidate clusters in the Clusters Hiding in Plain Sight survey, which is designed to find new galaxy clusters with extreme central galaxies that were misidentified as bright isolated sources in the ROSAT All-Sky Survey catalog. We identify 11 cluster candidates around X-ray, radio, and mid-IR-bright sources, including six well-known clusters, two false associations of foreground and background clusters, and three new candidates, which are observed further with Chandra. Of the three new candidates, we confirm two newly discovered galaxy clusters: CHIPS 1356-3421 and CHIPS 1911+4455. Both clusters are luminous enough to be detected in the ROSAT All-Sky Survey data if not because of their bright central cores. CHIPS 1911+4455 is similar in many ways to the Phoenix cluster, but with a highly disturbed X-ray morphology on large scales. We find the occurrence rate for clusters that would appear to be X-ray-bright point sources in the ROSAT All-Sky Survey (and any surveys with similar angular resolution) to be 2% ± 1%, and the occurrence rate of clusters with runaway cooling in their cores to be <1%, consistent with predictions of chaotic cold accretion. With the number of new groups and clusters predicted to be found with eROSITA, the population of clusters that appear to be point sources (due to a central QSO or a dense cool core) could be around 2000. Finally, this survey demonstrates that the Phoenix cluster is likely the strongest cool core at z < 0.7—anything more extreme would have been found in this survey.more » « less
-
Abstract Using stellar population synthesis models to infer star formation histories (SFHs), we analyze photometry and spectroscopy of a large sample of quiescent galaxies that are members of Sunyaev–Zel’dovich (SZ)-selected galaxy clusters across a wide range of redshifts. We calculate stellar masses and mass-weighted ages for 837 quiescent cluster members at 0.3 < z < 1.4 using rest-frame optical spectra and the Python-based Prospector framework, from 61 clusters in the SPT-GMOS Spectroscopic Survey (0.3 < z < 0.9) and three clusters in the SPT Hi-z cluster sample (1.25 < z < 1.4). We analyze spectra of subpopulations divided into bins of redshift, stellar mass, cluster mass, and velocity-radius phase-space location, as well as by creating composite spectra of quiescent member galaxies. We find that quiescent galaxies in our data set sample a diversity of SFHs, with a median formation redshift (corresponding to the lookback time from the redshift of observation to when a galaxy forms 50% of its mass, t 50 ) of z = 2.8 ± 0.5, which is similar to or marginally higher than that of massive quiescent field and cluster galaxy studies. We also report median age–stellar mass relations for the full sample (age of the universe at t 50 (Gyr) = 2.52 (±0.04)–1.66 (±0.12) log 10 ( M /10 11 M ⊙ )) and recover downsizing trends across stellar mass; we find that massive galaxies in our cluster sample form on aggregate ∼0.75 Gyr earlier than lower-mass galaxies. We also find marginally steeper age–mass relations at high redshifts, and report a bigger difference in formation redshifts across stellar mass for fixed environment, relative to formation redshifts across environment for fixed stellar mass.more » « less
-
Abstract We present the discovery of the most distant, dynamically relaxed cool core cluster, SPT-CL J2215−3537 (SPT2215), and its central brightest cluster galaxy (BCG) atz= 1.16. Using new X-ray observations, we demonstrate that SPT2215 harbors a strong cool core with a central cooling time of 200 Myr (at 10 kpc) and a maximal intracluster medium cooling rate of 1900 ± 400M⊙yr−1. This prodigious cooling may be responsible for fueling the extended, star-forming filaments observed in Hubble Space Telescope imaging. Based on new spectrophotometric data, we detect bright [Oii] emission in the BCG, implying an unobscured star formation rate (SFR) of M⊙yr−1. The detection of a weak radio source (2.0 ± 0.8 mJy at 0.8 GHz) suggests ongoing feedback from an active galactic nucleus (AGN), though the implied jet power is less than half the cooling luminosity of the hot gas, consistent with cooling overpowering heating. The extreme cooling and SFR of SPT2215 are rare among known cool core clusters, and it is even more remarkable that we observe these at such high redshift, when most clusters are still dynamically disturbed. The high mass of this cluster, coupled with the fact that it is dynamically relaxed with a highly isolated BCG, suggests that it is an exceptionally rare system that must have formed very rapidly in the early universe. Combined with the high SFR, SPT2215 may be a high-zanalog of the Phoenix cluster, potentially providing insight into the limits of AGN feedback and star formation in the most massive galaxies.more » « less
An official website of the United States government
